“Prokaryotic Pathway” Is Not Prokaryotic: Noncyanobacterial Origin of the Chloroplast Lipid Biosynthetic Pathway Revealed by Comprehensive Phylogenomic Analysis
نویسندگان
چکیده
Lipid biosynthesis within the chloroplast, or more generally plastids, was conventionally called "prokaryotic pathway," which produces glycerolipids bearing C18 acids at the sn-1 position and C16 acids at the sn-2 position, as in cyanobacteria such as Anabaena and Synechocystis. This positional specificity is determined during the synthesis of phosphatidate, which is a precursor to diacylglycerol, the acceptor of galactose for the synthesis of galactolipids. The first acylation at sn-1 is catalyzed by glycerol-3-phosphate acyltransferase (GPAT or GPT), whereas the second acylation at sn-2 is performed by lysophosphatidate acyltransferase (LPAAT, AGPAT, or PlsC). Here we present comprehensive phylogenomic analysis of the origins of various acyltransferases involved in the synthesis of phosphatidate, as well as phosphatidate phosphatases in the chloroplasts. The results showed that the enzymes involved in the two steps of acylation in cyanobacteria and chloroplasts are entirely phylogenetically unrelated despite a previous report stating that the chloroplast LPAAT (ATS2) and cyanobacterial PlsC were sister groups. Phosphatidate phosphatases were separated into eukaryotic and prokaryotic clades, and the chloroplast enzymes were not of cyanobacterial origin, in contrast with another previous report. These results indicate that the lipid biosynthetic pathway in the chloroplasts or plastids did not originate from the cyanobacterial endosymbiont and is not "prokaryotic" in the context of endosymbiotic theory of plastid origin. This is another line of evidence for the discontinuity of plastids and cyanobacteria, which has been suggested in the glycolipid biosynthesis.
منابع مشابه
A new class of Arabidopsis mutants with reduced hexadecatrienoic acid fatty acid levels.
Chloroplast glycerolipids in a number of higher-plant species, including Arabidopsis thaliana, are synthesized by two distinct pathways termed the prokaryotic and eukaryotic pathways. The molecules of galactolipids produced by the prokaryotic pathway contain substantial amounts of hexadecatrienoic acid fatty acid. Here we describe a new class of mutants, designated gly1, with reduced levels of ...
متن کاملFluxes through the prokaryotic and eukaryotic pathways of lipid synthesis in the '16:3' plant Arabidopsis thaliana.
The kinetics of [1-14C]acetate incorporation in Arabidopsis thaliana L. (Heyn) showed almost equal labelling of phosphatidylcholine (PC) and diacylgalactosylglycerol (DGG) at early times and the transfer of radioactivity from PC to DGG and diacyldigalactosylglycerol (DDG) at longer times. These kinetics demonstrated the parallel operation of the prokaryotic and eukaryotic pathways of lipid synt...
متن کاملMutations in the Prokaryotic Pathway Rescue the fatty acid biosynthesis1 Mutant in the Cold.
The Arabidopsis (Arabidopsis thaliana) fatty acid biosynthesis1 (fab1) mutant has increased levels of the saturated fatty acid 16:0 due to decreased activity of 3-ketoacyl-acyl carrier protein (ACP) synthase II. In fab1 leaves, phosphatidylglycerol, the major chloroplast phospholipid, contains up to 45% high-melting-point molecular species (molecules that contain only 16:0, 16:1-trans, and 18:0...
متن کاملChloroplast proteomics highlights the subcellular compartmentation of lipid metabolism.
Recent advances in the proteomic field have allowed high throughput experiments to be conducted on chloroplast samples and the data are available in several databases such as the Plant Protein Database (PPDB), or the SubCellular Proteomic Database (SUBA). However, the accurate localization of many proteins that were identified in different subplastidial compartments often remains hypothetical, ...
متن کاملDual Role for Phospholipid:Diacylglycerol Acyltransferase: Enhancing Fatty Acid Synthesis and Diverting Fatty Acids from Membrane Lipids to Triacylglycerol in Arabidopsis LeavesC
There is growing interest in engineering green biomass to expand the production of plant oils as feed and biofuels. Here, we show that PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE1 (PDAT1) is a critical enzyme involved in triacylglycerol (TAG) synthesis in leaves. Overexpression of PDAT1 increases leaf TAG accumulation, leading to oil droplet overexpansion through fusion. Ectopic expression of o...
متن کامل